Available at

WWW MATHEMATICSwEB.0RG T

Approximation
Theory

POWERED BY SCIENCE ‘dDIHEOT'

ACADEMIC
PRESS Journal of Approximation Theory 121 (2003) 269286

http://www.el sevier.com/l ocate/jat

Approximation orders of formal Laurent series
by Oppenheim rational functions

Ai-Hua Fan®®* and Jun Wu®

4 Department of Mathematics, Wuhan University, Wuhan, Hubei 430072, People’s Republic of China
I AMFA, CNRS, UMR 6140, University of Picardie Jules Verne 33, Rue Saint Leu, 80039 Amiens, France

Received 23 April 2002; accepted in revised form 22 November 2002
Communicated by Doron S. Lubinsky

Abstract

We study formal Laurent series which are better approximated by their Oppenheim
convergents. We calculate the Hausdorff dimensions of sets of Laurent series which have given
polynomial or exponential approximation orders. Such approximations are faster than the
approximation of typical Laurent series (with respect to the Haar measure).
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1. Statements of results

Let ¢>2 be an integer and F, be a finite field of ¢ elements. Let ¥ = F,((z™"))
denote the field of all formal Laurent series A = Y_,°, ¢,z™" in an indeterminate z,
with coefficients ¢, all lying in the field F,. Recall that F,[z] denotes the ring of
polynomials in z with coefficients in [F,.

For the above formal Laurent series 4, we may assume that c¢,7#0. Then the
integer v = v(A) is called the order of A. The norm (or valuation) of A is defined to be
||4|| = g~*™). With the convention v(0) = + oo and ||0|| = 0, we have the following:

(i) ||4]|=>0 with ||4]| = 0 iff 4 = 0;
(i) [|4B[| = [|4]| - ||B]};
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(i) [|ocA + BBl <max(|| ]|, ||BIl) (¥, feF,);
(i) 220, B0, || |||l = ||[x4 + BBI| = max(||4]l, ||BI)).

In other words, || - || is a non-Archimedean norm of the field &. It is well known that
& is a complete metric space under the metric p defined by p(4, B) = ||4 — B]|. See
[5, Chapter 5] for more information on the normed field .#. See also [1,4,6,9].

For A=3% " cz "€, let [A] =3, _, oo caz "€Fy[z]. We call [4] the integral
part of A. Tt is evident that the integer —v(A4) := —v is equal to the degree deg [A] of
the polynomial [A4] of z.

The Oppenheim expansions of Laurent series were introduced by Knopfmacher
and Knopfmacher [7,8]. Let us now recall the definition.

Let {r.},~, and {s,},., be two sequences of non-zero polynomials over F,
satisfying the following hypothesis:

(H) v(Z—”) <2, ie. degs, —degr,<2 (Vn=1).
This condition is natural, as we shall see later, for the algorithm described below to
be effective.

Given A€ %, denote that ay = [4]. Then we define recursively a finite or an infinite
sequence of formal Laurent series {4,} associated to 4. Define 4; = A — ay.
Suppose A4, (n>1) is defined. If 4,#0, then let a, = [Ain] and define

), 0

where s,(a,) and r,(a,) denote the composition of polynomials. If 4, =0, this
recursive process stops. We call {a, } the digits of 4. It was shown [7,8] that the above
algorithm leads to a finite or an infinite series which converges to A4 (relative to p).
This series (see (2)) is called the Oppenheim expansion of Laurent series of A.

An+1 = <An -

Theorem A (Knopfmacher and Knopfmacher [7,8]). Every xe % has a finite or an
infinite convergent (relative to p) expansion of the form

o0

1 +ZV1(01(X))'“V”(“”(X)) 1 (2)

X =ap(x) + ar(x) o si(ai(x)) - su(an(x)) a1 (x)’

where a,(x)eF[z], ap(x) = [x], and deg a;(x) =1, for any n>=1,
dega,1(x)=2degay,(x) + 1 + degr,(a,(x)) — deg s, (au(x)). (3)

The expansion is unique for x subject to the proceeding admissibility condition (3) on
the digit a,(x).

Let I denote the valuation ideal z~'F,[[z""]] in the ring of formal power series

F,[[z7"]]. It consists of all formal series Y.~ ¢,z"". For any n>1, define the map
_ _ U\ sa([1/x])
7,0=0, T,x= (x [1/x]>r,,([1/x]) for xeI\{0}.
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It may be checked that 7, maps [ into [ iff hypothesis (H) is satisfied, and that
an(x) = a(Ty_jo---oTroTix) with a(x)=[1/x].

Here are some special cases which were extensively studied:

Liroth expansion: s,(z) = z(z — 1), ry,(z) = 1;

Engel expansion: s,(z) = z, r,(z) = 1;

Sylvester expansion: s,(z) =1, r,(z) = 1;

Cantor infinite product: s,(z) =z, r,(z) =z + L.

The ideal 7 is compact because it can be identified with [],~, F, (the metric p
restricted on 7 is exactly the usual ultra-metric on [[,~, F,). A natural measure on /
is the normalized Haar measure on [],, F,, which we denote by P. We now
consider the approximations of formal Laurent series by rational functions. For any
xel, consider the partial sums

wy(x) =

)

1 ~ ri(ar(x) - (g-1(x) 1
2 St

ar(x) x)) -+ sj-1(aj-1(x)) a;(x)

which are called Oppenheim convergents of x. The following metric theorem was
proved in [3] for a large class of Oppenheim expansion under a stronger hypothesis
than (H).

Theorem B (Fan and Wu [3]). Suppose the following hypothesis is satisfied:
(HL) degs, —degr, =L for any n>=1

where L<2 is a fixed integer. Then

(1) If L =2, then for P-almost all xel,

.1 2q
nll)rr}v ZIqu [|x — wn(x)|| = o

(i) If L = 1, then for P-almost all xel,

.1 q
nlin}b ;logq [|x — o (x)|| = —m-
(ii1) If L<O0, then for P-almost all xel,
. 1 1
Jim mlogq ¥ = on()|| = ;=7 G(x),

where 0<3=£< G(x) < oo for P-almost all xel.

Roughly speaking, when L = 2, the last theorem means that for P-almost all xe/,
2

Clln

we have |[|x —w,(x)||[~q 7 1". We could say that x is approximated by its
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convergents w,(x) with linear order quqln We would like to know which Laurent

series can be approximated with polynomial orders an’ (¢>0, 8> 1) or exponential
orders ¢t (¢>0,7>1). Similar questions arise when L =1 or L<0. We answer
these questions by the following theorems.

Theorem 1. Suppose L<0. For any 1>2 — L and >0, we have

. 1 !
dlm{er: T—nlogq l[x — wn(x)|| = — é} :m'

Theorem 2. Suppose L = 1. For any >1 and a.>0, we have
dim{xe] logq [|x — o(x)|| - — oc} =1.
For any t>1 and £>0, we have

. 1 1
dlm{er: T_nlqu [|x — w,(x)|| > — 5} =

Theorem 3. Suppose L = 2. For any f>1 and a.>0, we have
. 1
d1m{xe] logq||x o(x)|| - —a}zi.
For any t>1 and £>0, we have
. 1 1
dlm{xel: Flogq [|x — w,(x)|| > — f} =T
Let E(t, &) be the set of xe [ such that % log, ||x — w,(x)|| > — & See Fig. 1, which
compares the dimensions of E(r,¢) followmg the values of L. Remark that the
dimensions, which are independent of ¢, have a common formula ;—— + . But the
domains of definition are different.

2. Preliminaries

From now on, we always assume that hypothesis (HL) is satisfied. But we need
only the weaker hypothesis (H) to get Lemmas 4 and 5.

A finite sequence of polynomials {ki, ks, ..., k,} < F,[z] is said to be admissible if it
satisfies the admissibility condition

degk; =1,
degkji1>2degk; + 1+ degrj(k;) — degs;(k;) (1<j<n—1).

We similarly define the admissibility for an infinite sequence of polynomials. It is
clear that the digital sequences {a,(x)},>, of the formal Laurent series are just all
possible admissible sequences (Theorem A).
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Fig. 1. The curve of dim E(z,¢) for L =2,1,0,—1 as function of 7, which is independent of ¢&.

Lemma 4. Let xel whose Oppenheim expansion is

& (@ (x)) - rai(an(x) 1
X nzz; C,,(.X), C,,(X)

=~ si(ar(x) - sum1 (@1 (x)) an(x)

We have ||cps1(X)|| <||ea(x)|] for all n=1.

Proof. Notice that

n—

v(en(x)) = (degsj(a;(x)) — degrj(a;(x))) + deg an(x).
1

~.
Il

The difference v(c,11(x)) — v(cy(x)) is equal to
deg sy(an(x)) — deg ru(an(x)) + deg ay1(x) — deg an(x),
which is strictly positive by the admissibility condition (3). [

Lemma 5. Suppose that {ki,k», ..., k,} cF,z] (n>1) is an admissible sequence. Then
the set

{xel: ai(x) = ki,a2(x) = ko, ...,ay(x) = k,,}
is equal to the disc B(C,, D,) with center

1 1 rl(kl)-~~rj,1(kj,1) 1
Cn =-—+ 7
2 si(kr)---sj-1(kj1) k;

J=2

and diameter

D — qZ;’;‘ (deg r;(kj)—deg 5(k}))—2 deg ky—1
= .

Proof. For any 1 <m<n, we define C,, and D,, in the same way as C, and D,,.
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For any x €7 such that a;(x) = ki, a2(x) = ka, ..., a,(x) = k,, we develop it into its
Oppenheim expansion (see Theorem A)
o0
x=C,+ Z ¢i(x),
Jj=n+1

where the functions c¢;(x) are defined as in Lemma 4. By Lemma 4, we get

115 = Col| = [[empr ()| = gRoim (o7 —dez (8)~deg ana ()

By the admissibility condition (3),
degr,(k,) — degs,(k,) — dega,1(x)< —2degk, — 1.
It follow that xe B(C,, D,). Thus we get
{xel: a1(x) =ki,ax(x) = ko, ..., a,(x) = k,} =B(C,, D;,).

Prove now the inverse inclusion. Let y € B(c,, D,). According to Theorem A, write
0
y=> ).
J=1
We are going to show that a;(y) = k; for 1<j<n. Let us first prove a;(y) = k.

Suppose a;(y) #k;. There are two cases.
Case I: dega;(y) #deg k. In this case, we have

el )

aly) ki a)|[ ||k
ol R CAUNR =t | NP et

By Lemma 4, we have

Therefore
max( : H \1 )>max max max(ll Ol llol)s sup g0
— | |l7 Ci 5 Ci 5 Ci .
ar()||" ||k 25jsn i ’ jZnEl i~
It follows that
1 1 1 1 1
— G| = ||—=— —|| = max( [|[—||,||-=|| ) = ||—|| = g~ &".
b=Gl=lao & <a1<y>Hk1 D Hk g

By the admissibility condition (3), we may check that log, D,, is decreasing so that
D, <Dy =g 2ol <giehigly — G,

which contradicts the fact ye B(C,, D,).

Case 11: deg a;(y) = deg k;. In this case, using (3), we can prove by induction on j
that
2 2

>llell 2<j<n).

>l G=2); Hki

ar(y)
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Thus
1 ’kl—al(y)H>.l o
ai(y) ki kiai(y) |7 ||k ay(y)
>ma><<2f§ax max(||¢;(»)]]; |l¢[]), sup |Cj(Y)||)-
Sjs<n j=n+1
Therefore
1 1 1P
_Cll = ——|l=||=|| =g 2%k > p =D,
Hy n|| al(y) kl ‘kl q > D n

Hence we have proved a;(y) = k. In the same way, we can show successively
a(y)=ky,...,a,(y) =k,. O

We finishing this section by stating the mass distribution principle (see [2,
Proposition 4.2]) that will be used several times.

Lemma 6. Let Ec1 be a Borel set and u be a probability measure with u(E)>0. If
there exist constants ¢>0 and 6 >0 such that

w(D)< c(diam D)*
for all disc D with diameter diam D<0o. Then

dim E >s.

3. Proof: case L<0

For any t>2 — L and a>0, choose a sufficient large integer jy>1 such that
Q- Ly + 1< [P ta), mS‘rf‘) (4)
and define a sequence of integers as follows:
=1 ¢=02-Lga+1Q2<i<i); ¢ =I[d (>j)
By condition (4), it may be checked that
=2 -Lig+1 (%>1). (5)
Then define
F.,={xel: degaj(x) =q; Vj>1}.

Proposition 7. Suppose L<0. Then for any t>2 — L and a>0, we have
1

dm#F,, = ———.
0 Foa L+7t—-1
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Proof. Let us first estimate the dimension from below by using the mass distribution
principle. For any n>1, let [FEI””)[Z] denote the set of the polynomials in F,[z] with
degree ¢,. Such polynomials are of the form

4n

x = Z e (ekeFy, ¢, #0).
k=0

For b, e[FEIq”[z],bze[Fg‘m[z], ...,bne[Fg‘m[z] (n=1), define

J(bi, by, ..., b,y) = {xel: a\(x) = by,a2(x) = by, ...,a,(x) = by, }.

We call J(by, b, ..., b,) an n-digital cylinder.
Remark that the sequence (b, b, ..., b,) is admissible because of (5). Let

M(by by, ..;by) = | J(bi,bos o by buy).

Gur1)
bus1 eV ]

Such a set M(by,bs, ..., by) is call a n-basic cylinder. It is easy to see

o0
Fr,a = ﬂ Em
n=1

where

E, = {xel: degaj(x) =¢q;, 1<j<n} = |J M(bi,by, ..., by).
b[,[)z ..... b,,

The n-basic cylinders have the following properties:
@ The diameter |M(b1,bs, ....b,)| = g " ey G,
(i) All M(by,by, ...,by,) are disjoint.
(iii) The number of n-basic cylinders is equal to (g — 1)"(]21':1 o

In fact, property (iii) is obvious and property (ii) is clear because
M(bl,bz, ...,bn)CJ(bl,bz, ...,bn)

and that J(by, by, ..., b,)’s are disjoint discs. Prove now property (i). Let x and y be
two points in M(by, b, ...,b,). Then there exist b,,,b), € [F(‘l”“)[z] such that

q
XGJ(bl,bz, ...,b,hq), yEJ(bl,bz, "'7b:z+l)'

We distinguish two cases.

Case 1: b,y = b, ;: In this case, both x and y belong to the same (n + 1)-digital
cylinder J(by, by, ..., b,41) so that, by Lemma 5, we have
;‘:1 qi—2qn+1—1 LY G nst (6)

—L )
llx —yl|<q <q
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Case 11: b, 1 #b,,, : In this case, we have

e )|

Ix =yl = G
n+1
:qu Z;lzl qj q_zqn+l+deg(bu+l_b:,+1)
n
< q*L = qj—qn+1 (7)

because of deg(b,11 — b, ) <qni1-

Notice that the last inequality becomes equality if deg(b,1 — b, ) = ¢ut1. Then
(1) follows from (6) and (7).

We define a probability measure p on the compact set F;, by

WM by, by, .. b)) = (g — 1) g 2 ¥

(It does define a measure by the Carathéodory extension theorem).
For any ¢>0, there is an integer ny = ny(¢) such that

Y S
LY g+ g L+t—1

¢ (Vn=ny), (8)

(L-1)Y g+ g Ltt-2 .
LY g+q0  Ltt—1

(Vn=ny). 9)

For any m> S !

i1 4+ 4ny, let n=ng be the integer such that

n—1

qu ZL] 9=+ <q—m<q*L ijl G
One of the following two situations will occur:

n n—1
q_L Z/:l qj—Yn+1 <q7m<q_L Z;‘:l ‘1/'_2%—]7 (Sl)

n—1

n—1
q*L Z/:l (lj*ZC[n*l <q—m<q*L Z/:l Qj*qn_(sz)

Suppose (S1): For any xeF,,, if the disc B(x,q") = {yel: ||y — x||<q ™}
intersects some n-basic cylinder M (b, b,, ..., b,), then we have

B(x,q"™)<J(by,bs, ..., by). (10)

Indeed, M(by,by,...,b,) (N B(x,qg™)#0 implies that B(x,¢ ™) intersects
J(b1, by, ..., b,). However, both J(by, b, ...,b,) and B(x,q™) are discs. It suffices
to compare their diameters, which is easy, to get the claimed inclusion. According
to (10), the disc B(x,¢~™) intersects one and exact one n-basic cylinder
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M(a;(x),ax(x), ...,a,(x)). Hence

u(B(x,q")) < (M (ai(x), ax(x), ..., an(x)))

S o

(e )
-m| —~—r———
< (q _ 1)—nq L ijl qj+qn+1

7m(+75')
<qg Mt (11)

((8) was used to get the last inequality).
Suppose (S2): We claim that for any x € F; ,, the number of n-basic cylinders which
intersect B(x,g~™) is bounded by

n—1
L . q2qu—m+1
q o :

In fact, assume that M(by, by, ...,b,) (B(x,q™)#0. Then B(x,q ™) intersects
J(b1,by, ..., b,). Recall that

n—1
N e e
n-2 n—1
I (b1,ba, . by ) =g " 2o 4 >qt 2 U0 g
where the next to the last inequality is assumed by (5). It follows that
J(bl,bz, ...,bn)CB(X, q_m)CJ<b1,b2, ...,bnfl). (12)

By the second inclusion in (12), we get by = a;(x), ..., by—1 = ay—1(x). If b, #a,(x),
by the first inclusion in (12), we have

Fi(b1) - tuoi(buo1) 1 ri(br) - ruei(buet) 1

s1(b1) - Su—1(bu=1) by~ s1(b1) -+~ Sn—1(bu=1) an(x)

Sq

i.e.

n—1

deg(b, — a,(x))<L q; + 2q, —m.

=
Write
by =coterz+ -+ g,z (¢q,#0),
an(x) = ¢y + ez 4 - 4, 2" (c, #0).
We must have

n—1
e =¢ forall k>ky=L q; + 2q, — m.
Jj=1
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So, the number of choices for b, is bounded by the number of choices for ¢y, ..., c,,
which is bounded by

n—1
ko+1 L . qi2qu—m+1
g =q e :

Thus the claim is proved. Therefore
u(B(x,g") < g (g — 1) g 2

=(¢—1)"qq"" SOy 4t
7m(#7s)
<qq T (13)

Let us check the last inequality, which is implied by

n—1
1
(L—l) jZI(Jj+61n—m<—m(m—s)

or equivalently

n—1
L+1t-2

(L-1) ;611+qn<M(m+£>~ (14)
However since

n—1

m=LY " g+ g,
j=1
(14) is implied by condition (9).

By (11) and (13) and Lemma 6, we get

1

L+t-1

The inverse inequality may be obtained by using the fact that for any n>1, n-basic
cylinders form a cover for F;,. Then by (i) and (iii), we have

nlog(g— 1D+ O g)lo 1
dim .. < lim g(q - )+ Qi1 ) logq _ .
T onse (LY gt dgua)logg Ltt—1

dim F, ,>

Proof of Theorem 1. Let E(t,¢) be the set of xel such that Jlog,[[x — w,(x)|| >
—£. By Lemma 4, we have

||X —w (X)H _ q—L ;’:l deg aj(x)—deg a,r1(x)
n = .

We can write

LY degaj(x) +degara(x) = 3 (degapi(x) — (1 — L) deg ay(x)) + degay (x).
J=1 Jj=1
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Thus
E(t,¢) = {xe]: % i (degajyi(x)—(1—-1L) degq,(x))—»f}.

It is easy to check that

{(r-1)

FT’HCE(‘C,f) with a:m

>0

where F., is defined in Proposition 7. By Proposition 7, we get

1

dim E(T, é))dlm Ff,a = m

Prove now the inverse inequality. Denote

n

ou(x) =Y (degaji(x) — (1 — L) deg a;(x)).

J=1

For any ¢>0, we have

E(t,&)c U Gy,

N=1

where
Gy = ﬁ {xel: 7"(¢& —¢)<o,(x)<t"(E+e)}.
n=N

By the o-stability of the Hausdorff dimension, we have only to show that

(&) (?)

i Gee )
dim Gy S L+ = D)

(VN=1, Ve>0),

where
aE)=Fr-10)¢—(t+ e, ce)=(t—1)E+ (t+ e

In the sequel, we only give a proof of N =1 (the case N >1 may be treated in the
same way).
Since 6,(x) — 0,-1(x) = dega,+1(x) — (1 — L) dega,(x), G; is contained in

H = m {xel: " '¢i(e) <deg any 1 (x) — (1 — L) deg a,(x) <" 'es(e)}.
n=1
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For any xe H and any n>1, we deduce by induction that
deg a,(x) < e2(e)7"! + (1 — L) deg ay (x)

<o) @ + (1= L)"?) 4+ (1 — L) dega,_(x)

e S (EY v - et

<
AN
Tn
< ee) A (1 —L)" degai(x),

and that

n—1 J
degan()> o) Y (1E) ~(1 - Ly degan)

:Cl(g)L—&-T:—lO - (1 ;L>> — (1 — L)"dega(x).

Stn.k) = er(e) +"':_ 1(1 _ (1 TL>"> _ (= L)'k,

T(n,k) = ex(e)—

Let

— 4+ (1 - L)Y'k.
L+r—l+( )'k

The proceeding estimates lead to

8

GicHcW = O ﬂ Wi ns
k=1 n=1

where Wy, = {dega;(x) = k; S(j, k) <degaj;1(x)<T(j, k), 1<j<n—1}. Again by
the g-stability of the Hausdorff dimension, we only need to show

- e (e)
<S——— = .
dim W, a@L+i=1) (Vk=1,Ve>0)

Define I(by, b, ..., b,) = {xel: ai(x) = by, ...,a,(x) = b,} for any finite sequence
bi,...,b, in F,[z]. Observe that

I/Vn,k: U I(blvb27"'7bn)7

where the union is taken over all polynomials by, b,, ..., b, such that

deghy =k; S(j,k)<degb;j1 <T(j,k), 1<j<n—1 (15)
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Let

M(blvb27--->bn): U I(bl»bZa“-;bnaanrl)

S(nk)<deg byy1 <T(n)k)

and

wi, = | Mbr,by, . by),

Brye b

where the union is taken over all sequences by, by, ..., b, satisfying (15). Then we can
write

o0

o0
() Win =) Wi
n=1 n

=1

It follows that for any n>1, all M (by, b, ..., b,) with by, by, ..., b, satistying (15) is a
cover of (2, Wi,. We will use this cover to give a upper bound of the Hausdorff
dimension of (2, W,.

Actually, all I(by,by, ...,b,) with by, by, ..., b, satisfying (15) is also a cover of
ﬂ,fil Wi.»- We could use this cover to estimate the dimension, which is however not
effective.

Let us first estimate the diameter of M(by,b,, ...,b,) and the number of all
M (by,by, ...,b,) in the cover.

By using (15), we can prove, in the same way as we prove (6) and (7), that

LKL Zj:]‘ S(j.k)—S(nk)

[M(b1,bs, ... ba)| <q = R,.

The number of M (by,bs, ...,b,)’s is equal to

n—1

i i "k
No=(a=1d"-]] Yoo a1 <(- Dg g2 708,
J=1 \ S(,k)<i<T(jk)

So
R .. . logN,
% < n
dim ,Q Wi, < llg 1£f “logR,
. Z;l;ll T(]ak)
= lim P
noo LYy S(s k) + S(ngk)
: T(n,k)
= lim
noow LS(n k) 4+ Sn+ 1,k) — S(n, k)
2 (¢)

Cae)(L+Tt—1)

where we have used the Toeplitz Lemma to obtain the next to the last equality.
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4. Proof: case L =2

Let A(f, o) be the set of xe such that J;log,||x — w(x)|| > — o By Lemma 4, we
have

b= on(x)]] = g 7 2o eEolIde s,

We construct a subset Fj, of I as follows:
Fg, = {xel: dega,(x) =1+ [n""'a] vnx=1}.

It may be checked that
FgocA(p,a) fora= ?.

By similar arguments in the proof of Proposition 7 (the actual case is simpler because
we can use directly J(by, ..., b,)’s instead of M (by, ..., b,)’s), we can show that

dim Fﬁﬂ = %

Thus we get dim A(f, ) >1.
In order to get the upper bound, first notice that when L = 2, every sequence
{b1,b, ...,b,} =F,[z] such that degb;>1 (1<j<n) is admissible. Recall that
I(by, by, ....by) ={xel: a\(x) = by, ...,an(x) = by}.

We construct a family of measure u, on I for 1>log g as follows:
n

w,(I(by1,ba, ....b,)) =exp (—t degb; — nP(t)) ,

Jj=1

where P(t) = log(q(q — 1)) — log(e’ — q).
Observe that, for any £¢>0, we have

a9 ) () 4B, (16)
N=1 n=N

where

Ay (f, o) = {xe[: nPla—e)<2 i deg a;j(x) +degan+1(x)<nﬂ(fx+s)}.

Jj=1

Let #(n,a,¢) be the family of all J(by, b, ..., b,) such that

degh;>1, (1<j<n); nfla—e)<2 Z degb; +deg b, 1 <nf(o+e).
=1
For N>1, we select all those discs in |J,—y #(n,o,¢) which are maximal
(JeU,_y F(n,a,¢) is maximal if there is no J'e |J,~y #(n,a,¢) such that J<=J’'
and J#J'). We denote by #(N,o,¢) the set of all maximal J in |J,_y #(n,a,¢).
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From (16), we see that for any N>1, #(N,a,¢) is a cover of A(f,o). Let
I(by,by,...,b,)e #(N,a,¢), we have

pg(I(b1, b2, ..., by)) =exp <—l Z degb; — ”P(I)>
=1

> exp(—é nPla+e) - nP(t))

and
|I(b1 s bz, ceey bn)| = q72 Z/h:l deg b;—1 <q72 Z;':ll deg bj—deg by < q*(l‘l*wﬁ(a*él).

Let 6 = % Then for sufficient large n, we have

t+0
2

2l (o4 0) = nP(0) = 22 (0= 1) (2~ ) <0,

So,

t+0
|I(b1 , bz, ceey bn)|2 log ¢
I(b1,ba;....bu) € 7 (N o.6)

Z exp(—énﬂ(aJre) —nP(t))él.

l(bl ;b2:~--3bn) Erf(N‘,a!S)
It follows that

t+0

. < '
dim A(f,«) Slogg

Letting t—log g then e—>0 (i.e. —0), we get dim A(f, oc)g%

Prove now the second part of Theorem 3. It is the same proof as that of
Theorem 1. We just point out the small differences. Let E(t, £) be the set in question.
We define

F.o={xel: dega,(x) =[t"a]+ 1 Vn=1}

for any a>0. We have

(-1

F, E f = .
0 E(t,&) fora et )

By estimating the dimension of F,, we get a lower bound of E(t,¢). The upper
bound of E(t, ) may be obtained as before (see the proof of Theorem 1).
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5. Proof: case L = 1

Let A(B, ) be the set of xe I such that % log, [[x — w(x)|| - — «. By Lemma 4, we
have

||X —w (X)HQ_Z:LI deg aj(x)—deg a,11(x)
n .

For any a>0, choose jj>1 such that
P ta) o + 1 (n+ 1) la = a2 1 (=),
Define
g =i (1<j<hp), g =1""dl (%>jo)
and
Fp,={xel: dega;(x) =gq;, Vj=1}.
We have
FgocA(B,a) with a=ap.
Also we may follow the proof of Proposition 7 to show that
dimFg, =1 (Ya>0),
thus we have dim 4(f, ) = 1.

The proof of the result concerning the exponential degree is the same as that of
Theorem 3. This time, in order to get the lower bound of dim E(z, ¢), we need

Fp,={xel: dega;(x) =gq;, Vj=1} (a>0),
where

g =j (1<j<io)s  qilddl (>jo)-
The integer jj here is choosen so that

[Wal=jo+ 1, [Za]—[da=1 (V>
We have
{(r-1)

F,,cE(t,¢) fora= =
The upper bound of dim E(z, ) is obtained in exactly the same way as before (see

the proof of Theorem 1).
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